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Abstract

Steady laminar free convection from flat vertical arrays of equally-spaced, horizontal isothermal cylinders set in free

air, is studied numerically. A specifically developed computer-code based on the SIMPLE-C algorithm is used for the

solution of the mass, momentum and energy transfer governing equations. Simulations are performed for arrays of 2–6

circular cylinders, for center-to-center separation distances from 2 up to more than 50 cylinder-diameters, and for val-

ues of the Rayleigh number based on the cylinder-diameter in the range between 5 · 102 and 5 · 105. It is found that the

heat transfer rate at the bottom cylinder remains the same as a single cylinder. In contrast, the downstream cylinders

may exhibit either enhanced or reduced Nusselt numbers depending on their location in the array and on the geometry

of the array. Heat transfer dimensionless correlating equations are proposed both for any individual cylinder in the

array and for the whole tube-array. New correlation-equations for the calculation of the heat transfer rate from a single

cylinder to the surrounding air are also proposed and compared to those available in the open literature.

� 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

Free convection heat transfer from arrays of horizon-

tal cylinders set in free space has a practical relevance to

many engineering applications, e.g., space heating, heat-

ing of high-viscosity oils for pumping ease, heating or

cooling of fluids in process plants, operation and safety

of nuclear reactors, as well as cooling of electronic de-

vices and refrigeration condensers.

The investigations conducted on this subject are

relatively few and mainly based on an experimental
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approach, chiefly due to the larger theoretical complexi-

ties involved in comparison with the equivalent forced

convection case, where (a) the mass flow rate is known,

(b) the momentum and energy equations are uncoupled,

provided that the physical properties of the fluid are as-

sumed to be constant, and (c) the governing equations

may be solved for a single representative element of

the array, provided that the fluid flow is assumed to be

fully developed.

The first documented work in this field was made by

Eckert and Soehngen [1] who carried out demonstrative

experiments with three horizontal isothermal cylinders

of 22.3-mm dia arranged one above the other, both

in-line and staggered, for Grashof numbers based on

the cylinder-diameter equal to 34,300 and 14,650,
ed.
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Nomenclature

D diameter of the cylinders

g gravity vector

g gravitational acceleration

H overall height of the array

k thermal conductivity of the fluid

N number of cylinders in the array

Ni ordinal number of the ith cylinder in the

array

Nua average Nusselt number of the whole tube-

array

Nui average Nusselt number of the ith cylinder

in the array

Nu0 average Nusselt number of the single cylin-

der

Nui(h) local Nusselt number of the ith cylinder in

the array

p dimensionless pressure

Pr Prandtl number = m/a
Q heat transfer rate

q heat flux

r dimensionless radial coordinate

Ra Rayleigh number based on the cylinder-

diameter = gb(tw � t1)D3/am
RaH Rayleigh number based on the overall

height of the array = gb(tw � t1)H3/am
S center-to-center separation distance

T dimensionless temperature

t temperature

U dimensionless vertical or radial velocity

component

U* dimensionless radial velocity = U · Pr ·
Ra�0.25

V dimensionless velocity vector

V dimensionless horizontal or tangential

velocity component

V* dimensionless tangential velocity = V ·
Pr · Ra�0.25

X dimensionless vertical coordinate

x center-to-center distance of the ith cylinder

from the bottom cylinder

Y dimensionless horizontal coordinate

Y* dimensionless radial distance from the cylin-

der surface = (r � 0.5) · Ra�0.25

Greek symbols

a thermal diffusivity of the fluid

b coefficient of volumetric thermal expansion

of the fluid

m kinematic viscosity of the fluid

h dimensionless polar coordinate

q density of the fluid

Subscripts

cr critical value

w referred to the cylinder surface

max maximum value

1 referred to the undisturbed fluid
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respectively. When the cylinders were set in a vertical

array, they found that the heat transfer rate at the bot-

tom cylinder remained the same as a single cylinder,

whilst that at the other cylinders decreased with eleva-

tion in the array. Once the cylinders were arranged in

a staggered array, the Nusselt number of the bottom

cylinder remained unchanged, but that of the offset

middle cylinder displayed a slight enhancement with

respect to the single cylinder.

Experimental investigations have been performed

under conditions of uniform heat flux by Lieberman

and Gebhart [2], who used a flat array of 10 wires of

0.127-mm dia with six spacings from 37.5 to 225 diame-

ters and four orientation angles from 0� to 90�, for a

Grashof number 1.75 · 10�2, and by Marsters [3], who

used a vertical array of three, five and nine cylinders

of 6.35-mm dia with five spacings from 2 to 20 diame-

ters, for Grashof numbers in the range between 750

and 2000. In both studies, it was again found that the

Nusselt number of the bottom cylinder was substantially
identical to that for a single cylinder, even for the closest

center-to-center separation distance investigated. In con-

trast, the upper cylinders exhibited reduced Nusselt

numbers at close spacings and enhanced Nusselt num-

bers at large spacings.

Same type of results were obtained by Sparrow and

Niethammer [4], who carried out an experimental study

on a vertical array of two isothermal cylinders of 37.9-

mm dia with different spacings from 2 to 9 diameters,

for Rayleigh numbers in the range between 2 · 104 and

2 · 105. In their work, the authors evaluated also the

influence of the cylinder-to-cylinder temperature imbal-

ance, by varying the wall-to-ambient temperature differ-

ence for the lower cylinder between zero and three times

that for the upper cylinder, showing that its effects are of

major importance at small spacings, being practically

negligible at large spacings.

The influence of the separation distance on the

enhancement or degradation of the heat transfer rate at

the downstream cylinders found in the aforementioned
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studies, is a strict consequence of the two opposite effects

which originate from the warm plume spawned by the

preceding cylinder. In fact, the hot buoyant flow from

the upstream cylinder acts as a forced convection field

wherein the downstream cylinder is embedded. On the

other side, the upward-moving warm plume causes a de-

crease in the temperature difference between the surface

of the downstream cylinder and the adjacent fluid. The

first effect, which tends to increase the heat transfer rate

at the downstream cylinder, prevails at large spacings.

The second effect, which tends to decrease the heat trans-

fer rate at the downstream cylinder, is of major impor-

tance at close spacings. This may be explained through

the theoretical results obtained by Gebhart et al. for a

plume above a horizontal line source [5]. In fact, they

demonstrated that the centerline temperature of the

plume decreases as the inverse of the three-fifths power

of the distance above the source, whilst the centerline

velocity of the plume increases as the fifth power of the

distance above the source. Hence, from a critical distance

onwards, the velocity effect must outweigh the effect of

the increased fluid temperature, thus bringing to the cited

enhancement of the Nusselt number of the downstream

cylinder.

On the other hand, it seems reasonable to assume

that as the distance above the source increases further,

also the velocity effect must progressively reduce up to

vanishing. Thus, the behavior of the downstream cylin-

der at very large spacings is expected to resemble that

typical for a single cylinder, which implies the existence

of an optimum separation distance at which the amount

of heat transferred is maximum. Indeed, this was ob-

served by Lieberman and Gebhart [2], whose experimen-

tal data indicate the occurrence of a very shallow

maximum of the average Nusselt number of the array

at a separation distance around 120 wire-diameters.

Also Sparrow and Niethammer [4] suggested the pres-

ence of a maximum at a separation distance around 8

tube-diameters, although upon the basis of a very short

number of experimental data.

Other successive experimental studies on free convec-

tion heat transfer from arrays of horizontal isothermal

cylinders brought substantially to same kind of results.

Among them, leaving aside all the papers which do

not deal strictly with vertical geometries (see, e.g.,

[6,7]), it seems worth mentioning the studies performed

by Tokura et al. [8], who used vertical arrays of two,

three and five cylinders of 22.2-mm, 28.5-mm and 38-

mm dia with spacings up to 20 diameters, for Grashof

numbers in the range between 4 · 104 and 4 · 105, and

by Sadegh Sadeghipour and Asheghi [9], who used a ver-

tical array of two to eight 6.6-mm dia cylinders with

spacings from 3.5 to 30.5 diameters, for Rayleigh num-

bers 500, 600, and 700. In both papers an empirical cor-

relation to predict the average Nusselt number of the

whole array in the experimented range of the Rayleigh
number is proposed. In addition, a shallow maximum

for the heat transfer rate is reported for a spacing of

nearly 15 cylinder-diameters, although, in some cases,

the maximum is difficult to detect, being concealed by

the spreading of the experimental data. In this connec-

tion, it seems interesting to note that the location of

the maximum reported by Tokura et al. [8] is rather dif-

ferent from that indicated by Sparrow and Niethammer

[4], despite both studies were conducted practically

under same conditions, using cylinders of the same

diameter.

As far as the numerical studies available in the liter-

ature are concerned, Farouk and Guceri [10] carried out

a study of laminar and turbulent free convection from

single and double, both in-line and staggered, horizontal

rows of closely spaced isothermal cylinders, showing

that the heat transfer rates were strongly dependent on

both the vertical and the horizontal spacings. More re-

cently, Chouikh et al. [11] conducted a numerical study

of laminar free convection from an isothermal two-cylin-

der vertical array with spacings in the range between 2

and 6 diameters, for Rayleigh numbers in the range be-

tween 102 and 104, with results consistent with those of

the earlier experimental studies.

According to what has been discussed above, the

main phenomenologic aspects of the problem are well

understood, but, on the other hand, a short availability

of data and, above all, an almost complete lack of cor-

relations for predicting the thermal behavior of individ-

ual cylinders set in a vertical array, as well as that of the

whole array, comes out (actually, the correlations pro-

posed for the whole array by Tokura et al. [8] and by

Sadegh Sadeghipour and Asheghi [9] are referred to

ranges of the Rayleigh number which seem too narrow

for extensive practical uses).

In this framework, the aim of the present paper is to

carry out a numerical analysis of free convection from

flat vertical arrays of equally-spaced, horizontal isother-

mal cylinders, so as to derive heat transfer dimensionless

correlating equations for any individual cylinder in the

array and for the whole tube-array, spanning across a

range of the Rayleigh number definitely wider than

those of other empirical equations available in the open

literature. The study is performed under the assumption

of steady laminar flow, for arrays of 2–6 circular cylin-

ders, for center-to-center separation distances from 2

up to more than 50 cylinder-diameters, and for values

of the Rayleigh number based on the cylinder-diameter

in the range between 5 · 102 and 5 · 105.
2. Mathematical formulation

The flat vertical array of equally-spaced, horizontal

circular cylinders depicted in Fig. 1 is considered. The

diameter D of the cylinders, their number N, and their



Fig. 1. Sketch of the tube-array.
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separation distance S are assigned. The height of the

array, i.e., the center-to-center separation distance

between the bottom and top cylinders, is then H = S ·
(N � 1). Free convection heat transfer occurs between

the cylinder surfaces, kept at uniform temperature tw
and the surrounding undisturbed fluid reservoir, as-

sumed at uniform temperature t1.

The buoyancy-induced flow is considered to be

steady, two-dimensional, and laminar. The fluid is as-

sumed to be incompressible, with constant physical

properties and negligible viscous dissipation and pres-

sure work. The buoyancy effects on momentum transfer

are taken into account through the Boussinesq

approximation.

Once the above assumptions are employed in the

conservation equations of mass, momentum, and en-

ergy, the following set of dimensionless governing equa-

tions is obtained:

r � V ¼ 0 ð1Þ

ðV � rÞV ¼ �rp þr2V� Ra
Pr

T
g

g
ð2Þ
ðV � rÞT ¼ 1

Pr
r2T ð3Þ

where V is the velocity vector having dimensionless

velocity components U and V normalized with m/D; T

is the dimensionless temperature excess over the uniform

temperature of the surrounding undisturbed fluid nor-

malized with the temperature difference (tw � t1); p is

the dimensionless pressure normalized with q1m2/D2; g

is the gravity vector; Ra = gb(tw � t1)D3/ma is the Ray-

leigh number based on the cylinder-diameter; and

Pr = m/a is the Prandtl number.
The related boundary conditions are T = 1 and V = 0

at the cylinder surfaces, and T = 0 and V = 0 at very

large distance from the tube-array.
3. Discretization grid system

The finite-difference solution of the governing equa-

tions (1)–(3) with the proper boundary conditions re-

quires that a discretization grid system is established

across the whole integration domain.

In this connection, a Cartesian grid could in principle

be adopted. However, once the node-spacing were ad-

justed so that the near-wall nodes fell exactly on the cyl-

inder surfaces, the resulting discretization grid would be

characterized by a low density of nodes precisely where

an accurate numerical solution demands a fine spacing,

i.e., in the region of the front and rear stagnation points

of each cylinder.

For this reason the problem is solved by the employ-

ment of a cylindrical polar grid in the proximity of each

cylinder, and of a Cartesian grid across the remainder of

the integration domain. Furthermore, a condition of

symmetry about the vertical midplane of the array is as-

sumed, thus obtaining the halving of the size of the inte-

gration domain. The integration domain is therefore

assumed to extend from the vertical symmetry midplane

up to a rectangular boundary set sufficiently far away

from the array to represent the so-called outer bound-

ary, as sketched in the left panel of Fig. 2, where the

coordinate systems adopted are also represented. In par-

ticular, the r and h coordinates of the polar systems are

measured from the center of the cylinders, and anti-

clockwise from downwards, respectively. In the polar

systems, U is the radial velocity component, and V is

the tangential velocity component. As concerns the

Cartesian system, whose origin is taken at the center

of the bottom cylinder, the X-axis is vertical and point-

ing upwards in the direction opposite to the gravity vec-

tor, whilst the Y-axis is horizontal. In this system, U is

the vertical velocity component, and V is the horizontal

velocity component.

According to the discretization scheme originally

developed by Launder and Massey [12], the cylindrical

polar grids and the Cartesian grid, which are entirely

independent of one another, overlap with no attempt

of node-matching. Their connection is provided by a

row of false nodes, one for each neighboring grid, lo-

cated beyond their intersection, as depicted in the middle

panel of Fig. 2.
4. Boundary conditions

The boundary conditions required for the numerical

solution of the governing equations (1)–(3) have to be



Fig. 2. Sketch of the coordinate systems and of the discretization-grid system.
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specified at each of the boundary lines which enclose the

two-dimensional integration domain assumed for the

present study. As specifically concerns the artificially im-

posed outer boundary, once this is placed sufficiently far

away from the tube-array, the fluid may reasonably be

assumed to enter or leave the integration flow-domain

in the direction normal to the boundary. The entering

fluid is assumed at the ambient temperature. As con-

cerns the leaving fluid, whose temperature is not known

a priori, a zero temperature gradient normal to the pseu-

do-boundary is assumed, thus implying that the local

heat transfer is dominated by convection rather than

by conduction, provided that the outflow velocity is suf-

ficiently large.

The following boundary conditions are applied:

(a) at the left symmetry line A–D

oU
oY

¼ 0 V ¼ 0
oT
oY

¼ 0 ð4Þ

(b) on the cylinder surfaces

U ¼ 0 V ¼ 0 T ¼ 1 ð5Þ

(c) at the bottom boundary line A–B

oU
oX

¼ 0 V ¼ 0

T ¼ 0 if U P 0 or
oT
oX

¼ 0 if U < 0

ð6Þ

(d) at the right boundary line B–C

U ¼ 0
oV
oY

¼ 0

T ¼ 0 if V < 0 or
oT
oY

¼ 0 if V P 0

ð7Þ
(e) at the top boundary line C–D

oU
oX

¼ 0 V ¼ 0

T ¼ 0 if U < 0 or
oT
oX

¼ 0 if U P 0
ð8Þ
Moreover, as far as the intersections between polar

and Cartesian grids are concerned, the values of the

dependent variables at the false nodes are obtained by

a linear interpolation of the values at the four surround-

ing nodes. With reference to the notations indicated in

the right panels of Fig. 2, the value of the general vari-

able / at any false Cartesian or polar node is calculated

through the following equations, respectively:

/P ¼ /1X EY S þ /2XWY S þ /3XWY N þ /4X EY N

ðXW þ X EÞðY S þ Y NÞ
ð9Þ

/P ¼ /1rEhS þ /2rWhS þ /3rWhN þ /4rEhN
ðrW þ rEÞðhS þ hNÞ

ð10Þ
5. Solution procedure

The set of governing equations (1)–(3) with the

boundary conditions (4)–(10) is solved through a con-

trol-volume formulation of the finite-difference method.

The pressure–velocity coupling is handled by the SIM-

PLE-C algorithm by Van Doormaal and Raithby [13],

which is essentially a more implicit variant of the SIM-

PLE algorithm by Patankar and Spalding [14]. The con-

vective fluxes across the surfaces of the control volumes

are evaluated by the QUICK discretization scheme by

Leonard [15]. Details on the SIMPLE procedure may

be found in Patankar [16]. Studies on the comparative

performance of different discretization schemes for the
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evaluation of the interface convective fluxes, as well as

studies on enhanced variants of the SIMPLE algorithm,

are widely available and well referenced in the open lit-

erature (see, e.g., [17]).

Fine uniform mesh-spacings are used for the discret-

ization of both the polar grid regions and the Cartesian

grid region. Starting from specified first-approximation

distributions of the dependent variables across the inte-

gration domain, the discretized governing equations are

solved iteratively through a line-by-line application of

the Thomas algorithm. Under-relaxation is used to en-

sure the convergence of the iterative procedure. The

solution is considered to be fully converged when the

maximum absolute values of both the mass source and

the percent changes of the dependent variables at any

grid-node from iteration to iteration are smaller than

prescribed values, i.e., 10�4 and 10�6, respectively.

After convergence is attained, the local and average

Nusselt numbers Nui(h) and Nui of any ith cylinder in

the array are calculated:

NuiðhÞ ¼
qD

kðtw � t1Þ ¼ �oT
or

����
r¼0.5

ð11Þ

Nui ¼
Q

pkðtw � t1Þ
¼ � 1

p

Z p

0

oT
or

����
r¼0.5

dh ð12Þ

where q is the heat flux and Q is the heat transfer rate.

The temperature gradients at the cylinder surfaces are

evaluated by assuming a second-order temperature pro-

file among each wall-node and the next two fluid-nodes.

The integrals are approximated by the trapezoid rule.

The average Nusselt number of the whole array Nua is

then obtained as the arithmetic mean value of the aver-

age Nusselt numbers Nui of the individual cylinders in

the array:
Table 1

Comparison of the present solutions with the bench mark solutions of

Goldstein

Ra Nu(h)

h = 0� 30� 60

103 Present 3.789 3.755 3.6

Saitoh et al. [18] 3.813 3.772 3.6

Wang et al. [19] 3.860 3.820 3.7

Kuehn and Goldstein [20] 3.890 3.850 3.7

104 Present 5.986 5.931 5.7

Saitoh et al. [18] 5.995 5.935 5.7

Wang et al. [19] 6.030 5.980 5.8

Kuehn and Goldstein [20] 6.240 6.190 6.0

105 Present 9.694 9.595 9.2

Saitoh et al. [18] 9.675 9.577 9.2

Wang et al. [19] 9.800 9.690 9.4

Kuehn and Goldstein [20] 10.150 10.030 9.6
Nua ¼
1

N

XN
i¼1

Nui ð13Þ

Tests on the dependence of the results obtained on

the mesh-spacing of both the polar and the Cartesian

discretization grids, as well as on the thickness of the

polar grid regions, and on the extension of the whole

computational domain, have been performed for a wide

variety of geometrical configurations analyzed and of

Rayleigh numbers investigated. In particular, the opti-

mal grid-size values, and the optimal positions of the

polar/Cartesian interface and of the outer pseudo-

boundary, i.e., those used for computations, which rep-

resent a good compromise between solution accuracy

and computational time required, are assumed as those

over which further refinements or further displacements

do not produce noticeable modifications in both the heat

transfer rates and the predicted flow field. Namely when,

for each cylinder in the array, the percent changes of the

local and average Nusselt numbers Nui(h) and Nui de-

fined above, as well as the percent change of the maxi-

mum value of the tangential velocity component at

h = 90� are smaller than prescribed accuracy values,

i.e., 1% and 2%, respectively. Typically: (a) the number

of nodal points (r · h) of the polar discretization grids

lie in the range between 45 · 72 and 135 · 90, (b) the

thickness of the polar grid regions varies between one

and five times the cylinder-diameter, and (c) the extent

of the whole integration flow-domain ranges between

two and twenty times the cylinder-diameter, depending

on the Rayleigh number, as well as on the number of cyl-

inders in the array, and on their center-to-center separa-

tion distance.

Furthermore, in order to validate the numerical code

and the composite-grid discretization scheme specifically
Saitoh et al. and with the results of Wang et al. and Kuehn and

Nu

� 90� 120� 150� 180�

40 3.376 2.841 1.958 1.210 3.013

40 3.374 2.866 1.975 1.218 3.024

00 3.450 2.930 1.980 1.200 3.060

20 3.450 2.930 2.010 1.220 3.090

56 5.406 4.716 3.293 1.532 4.819

50 5.410 4.764 3.308 1.534 4.826

00 5.560 4.870 3.320 1.500 4.860

10 5.640 4.820 3.140 1.460 4.940

97 8.749 7.871 5.848 1.989 7.886

78 8.765 7.946 5.891 1.987 7.898

80 8.900 8.000 5.800 1.940 7.970

50 9.020 7.910 5.290 1.720 8.000
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developed for the present study, the local and average

Nusselt numbers obtained for a single cylinder at Ray-

leigh numbers 103, 104, and 105, have been compared

with the benchmark data by Saitoh et al. [18], as shown

in Table 1, where the numerical results of Wang et al.

[19] and of Kuehn and Goldstein [20] are also reported.

In particular, it may be seen that the local results are

well within ±1% of the benchmark data, whilst the abso-

lute value of the largest percent difference between the

average Nusselt numbers is 0.36%. The computed distri-

butions of the dimensionless temperature T, and of the

dimensionless radial and tangential velocities U* = U ·
Pr · Ra�0.25 and V* = V · Pr · Ra�0.25 versus the di-
Fig. 3. Comparison between the present local results and other

results available in the literature for the dimensionless temper-

ature profiles close to a single cylinder.

Fig. 4. Comparison between the present local results and other

results available in the literature for the dimensionless radial

velocity profiles close to a single cylinder.

Fig. 5. Comparison between the present local results and other

results available in the literature for the dimensionless tangen-

tial velocity profiles close to a single cylinder.

Fig. 6. Comparison between the present results and other

experimental results available in the literature for a two-

cylinder array.
mensionless radial distance from the cylinder surface

Y* = (r � 0.5) · Ra�0.25 at the Rayleigh number 105 are

then compared (a) with the experimental data of Kuehn

and Goldstein [20], (b) with the numerical results of Sai-

toh et al. [18], Wang et al. [19], and Kuehn and Gold-

stein [20], and (c) with the analytical results of Chiang

and Kaye [21], as reported in Figs. 3, 4, and 5,

respectively.

Finally, the results obtained for a two-cylinder array

with tube-spacings in the range between 2 and 10 dia-

meters at several Rayleigh numbers are compared with

the experimental data by Sparrow and Niethammer

[4], Tokura et al. [8], and Sadegh Sadeghipour and Ashe-

ghi [9], showing a meaningfully good agreement, as re-

ported in Fig. 6, where the percent differences of the

ratio Nu2/Nu0 between the Nusselt number of the upper
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cylinder and that of the single cylinder, plotted against

the dimensionless tube-spacing S/D, show to lie within

the range ±2.5%.
6. Results and discussion

Numerical simulations are performed for Pr = 0.71,

which corresponds to air, and different values of (a)

the Rayleigh number Ra in the range between 5 · 102

and 5 · 105, (b) the number N of cylinders in the range

between 1 and 6, and (c) the center-to-center dimension-

less separation distance S/D in the range between 2 and a

maximum value (S/D)max = [(H/D)max]/(N � 1).

The maximum value of the dimensionless overall

height of the tube-array (H/D)max is assumed to be equal

to [(RaH)cr/Ra]
1/3, where (RaH)cr is the critical value of

the Rayleigh number based on the height of the tube-

array at which the transition from laminar to turbulent

regime occurs. Actually, since data on the transition to

the turbulent flow regime for a vertical tube-array are

not available in the open literature, a value of the same

order of that relevant to the vertical plate, i.e., �109, is

tentatively assumed (whenever this value should be too

large, i.e., should the transition occur at a critical value

of the Rayleigh number smaller than 109, the conver-

gence of the iterative procedure is not achieved).
Fig. 7. Comparison between the present results and other results availa

cylinder.
6.1. Heat transfer from a single cylinder

The results obtained for the single cylinder in the

range 102 6 Ra 6 106 are presented in Fig. 7, where

some of the most prominent correlations for free convec-

tion heat transfer from a single cylinder available in the

literature, i.e. those by Morgan [22], Raithby and Hol-

lands [23], Kuehn and Goldstein [24], and Churchill

and Chu [25], as well as the experimental data by Clemes

et al. [26], are also reported for comparison.

An overall good agreement between the present data

and those obtained by the previous workers may be no-

ticed. In particular, a rather excellent degree of agree-

ment with the experimental data by Clemes et al. may

be observed, which provides further confidence in the

numerical code developed.

In contrast, an exception is represented by the Chur-

chill–Chu equation, whose predictions are meaningfully

smaller than the present results. Indeed, this was ex-

pected, as in the range 102 6 Ra 6 106 the Churchill–

Chu equation falls well below the data upon which it

was based, i.e., the data by Koch [27], Rice [28], and

Wamsler [29].

As concerns the other correlations, those proposed

by Morgan overpredict slightly the present Nusselt num-

bers, especially at the largest Rayleigh numbers investi-

gated. This may possibly be explained by considering
ble in the literature for the average Nusselt number of the single



Fig. 8. Distributions of the ratio Nui/Nu0 vs. x/H for a four-

cylinder array, at different values of Ra and S/D.
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that Morgan included also data on liquids, yet, in his

correlations he did not consider the effects of the Prandtl

number.

The Raithby–Holland and the Kuehn–Goldstein

equations are multi-Prandtl number equations based

on a conduction layer model, which make use of a Chur-

chill–Usagi blending procedure [30]. However, the differ-

ent choice of the blending exponent, assumed equal to

3.337 by Raithby and Hollands, and to 15 by Kuehn

and Goldstein, brings the Kuehn–Goldstein equation

to agree the present data much more closely than the

Raithby–Holland equation does.

Finally, all the correlations with slope constant

across the entire range of Rayleigh number considered

here (typically 0.25, as for, e.g., the correlation-equa-

tions proposed by Kutateladze [31] and Fand et al.

[32], which are not represented in Fig. 7 for the sake

of clarity) seem far too inaccurate, especially at low

Rayleigh numbers.

The numerical results obtained for the average Nus-

selt number of the single cylinder are expressed as a

function of the Rayleigh number by the following two

distinct simple algebraic relations:

Nu ¼ 0.769Ra0.198 for 102 6 Ra 6 104 ð14Þ

with percent standard deviation of error Esd = 0.41%,

and range of error E from �0.92% to +0.71%;

Nu ¼ 0.537Ra0.235 for 104 < Ra 6 106 ð15Þ

with percent standard deviation of error Esd = 0.71%,

and range of error E from �0.99% to +1.87%.

In particular, it seems worth noticing that Eq. (15) is

very similar to that proposed by Sparrow and Boess-

neck, i.e., Nu = 0.592Ra0.23, which is based on experi-

ments covering the range of Rayleigh number from

2 · 104 to 2 · 105 [6].

The whole set of the present numerical data may also

be correlated through the following binomial algebraic

relation of the Churchill–Chu type:

Nu ¼ 0.626þ 0.417Ra0.25 for 102 6 Ra 6 106 ð16Þ

with percent standard deviation of error Esd = 0.89%,

and range of error E from �1.66% to +2.03%.

It seems interesting to point out that Eq. (16), besides

covering the whole range of Rayleigh number consid-

ered here with a degree of accuracy of the same order

of those of Eqs. (14) and (15), may represent a good op-

tion to these equations in all those cases the exponent

0.25 of the Rayleigh number, typical for many lami-

nar-flow situations, should be considered as inalienable.

6.2. Heat transfer from individual cylinders in the array

The effects of both the cylinder-spacing S/D and the

Rayleigh number Ra on the average heat transfer rate

from the ith cylinder in the array are pointed out in
Fig. 8, where some representative results are reported

for a 4-cylinder array. The ordinate of each diagram is

the ratio Nui/Nu0 between the average Nusselt numbers

for the ith cylinder and for the single cylinder at same

Rayleigh number, so as to highlight in what measure

the interactions of the ith cylinder with the upstream

and downstream cylinders in the array either enhance

or degrade its heat transfer performance relative to that

of a single cylinder. It may be seen that at any Rayleigh

number, for any tube-array, the heat transfer rate at the

bottom cylinder is substantially identical to that for a

single cylinder, even for the closest separation distance

investigated. In contrast, the degree of enhancement or

degradation of the heat transfer rate at any downstream

cylinder is strongly dependent on the cylinder-spacing,

whilst showing only a slight dependence on the Rayleigh

number. In more details, at any Rayleigh number inves-

tigated, for the smaller cylinder-spacings, degradation is

generally the rule, whilst, at the larger separation dis-

tances, enhancement predominates, as found also in

the aforementioned previous studies carried out on this

same subject.

It seems worth noticing that for tube-arrays consist-

ing of the same number of cylinders, the same distribu-

tion of the ratio Nui/Nu0 vs. x/H may be obtained at

different Rayleigh numbers, provided that the cylinder-

spacing S/D is decreased as the Rayleigh number Ra is



Fig. 9. Polar distributions of the ratio Nu2(h)/Nu0(h) for

the second cylinder in a four-cylinder array, at Ra = 103 and

S/D = 5, and at Ra = 105 and S/D = 3.
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increased. This is, e.g., the case of the 4-cylinder array at

Ra = 103 with S/D = 5, and at Ra = 105 with S/D = 3, as

reported in the left panels of Fig. 9. However, leaving

aside the bottom cylinder (whose behavior, as said, is

the same as for the single cylinder), the local heat trans-

fer performance of any ith downstream cylinder relative

to that of a single cylinder, i.e., the local value of the

ratio Nui(h)/Nu0(h), depends on the Rayleigh number

considered. This is shown in the right panel of Fig. 9,

where the polar distributions of the ratio Nu2(h)/Nu0(h)
between the local Nusselt numbers for, e.g., the second

cylinder and the single cylinder at the same angle h,
are depicted for the two cases indicated above.

As concerns the effects of the number of cylinders N

upon the heat transfer rate at the ith cylinder, the distri-

butions of the ratio Nui/Nu0 along tube-arrays consisting

of two to six cylinders with spacings S/D = 2, 3, and 4,

are reported in Fig. 10 for Ra = 104. It may be noticed
Fig. 10. Distributions of the ratio Nui/Nu0 through tube-arrays

of two to six cylinders, at Ra = 104 and for different values of

S/D.
that for S/D > 2 the average heat transfer rate at the

ith cylinder is practically independent of the number of

downstream cylinders. This means that the heat transfer

rate at the ith cylinder is determined only by the interfer-

ence with the upstream cylinders, thus implying that the

problem may be addressed to as a one-way coordinate

problem. However, for S/D = 2 a slight increase in the

heat transfer rate at the ith cylinder may be observed

in all those cases the ith cylinder is the top cylinder of

the array, i.e., whenever i = N. This may be explained

by considering that, for i < N at close spacing, the buoy-

ant flow around the ith cylinder cannot penetrate

completely the space between the consecutive ith and

(i + 1)th cylinders, which implies that the region of the

rear stagnation point of the ith cylinder is wider than

the corresponding region for the top cylinder of the ar-

ray, and then that a smaller amount of heat is exchanged

at its upper surface.

The whole set of numerical results obtained for the

average Nusselt number Nui of any individual ith cylin-

der in the array may be correlated to the Rayleigh num-

ber Ra, to the cylinder location relative to the center of

the bottom cylinder x/H, and to the ordinal number Ni

of the cylinder, by the following two distinct transcen-

dent equations, as also shown in Fig. 11:

Nuith ¼ Ra0.25f0.364 ln½ðx=DÞ0.4=N 0.9
i � þ 0.508g

2 6 Ni 6 6 2ðNi � 1Þ < x=D 6 8þ Ni

5� 102 6 Ra 6 5� 105

ð17Þ

with percent standard deviation of error Esd = 3.19%,

and range of error E from �5.07% to +7.97%;

Nuith ¼ Ra0.25f0.587 ln½ðx=DÞ0.33=N 0.5
i � þ 0.350g

2 6 Ni 6 6 8þ Ni < x=D 6 ð109=RaÞ0.333

5� 102 6 Ra 6 5� 105

ð18Þ

with percent standard deviation of error Esd = 3.27%,

and range of error E from �5.93% to +7.96%.

Finally, from the analysis of Figs. 8 and 11, it is evi-

dent that in the present study the maximum for the heat

transfer rate, which was found experimentally by some

of the previous workers at different optimal tube-spac-

ings, has not been detected, at least within the limits of

the largest separation distances considered here. Taking

into account the aforementioned shallowness of such

maximum, as well as the reported discrepancies in the

values of the optimal tube-spacing (from 8 to 120 diam-

eters), this may possibly be ascribed to the natural dis-

turbances which inevitably arise in the course of the

experiments, whose contribution cannot be accounted

for in a numerical simulation model. In fact, these natu-

ral disturbances, which are function of several factors,

as, e.g., the isolation of the test room, the nearess of free

surfaces, and the quiescience of the ambient surround-

ings, to name a few, may decrease the stability of the



Fig. 11. Distributions of the ratio Nui/Ra
0.25 vs. x/H for the downstream cylinders.

Fig. 12. Distributions of Nua vs. S/D for tube-arrays consisting

of different numbers of cylinders, at Ra = 103.

Fig. 13. Distributions of Nua vs. S/D for tube-arrays consisting

of different numbers of cylinders, at Ra = 104.

Fig. 14. Distributions of Nua vs. S/D for tube-arrays consisting

of different numbers of cylinders, at Ra = 105.
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warm plume spawned by the upstream cylinder. This

means that, from a ‘‘critical’’ distance onwards, the ris-

ing plume may start swaying increasingly with height up

to breaking, which would clearly affect the heat transfer

rate at the downstream cylinder, whose thermal behav-

ior would ultimately degrade.

6.3. Heat transfer from the whole tube-array

The distributions of the average Nusselt number of

the whole array Nua versus the tube-spacing S/D for dif-

ferent numbers of cylinders in the array, are reported in

Figs. 12–14, for Rayleigh numbers 103, 104, and 105,

respectively.

As expected, the average Nusselt number of the

whole tube-array increases with increasing the Rayleigh

number. In addition, Nua increases also with S/D,
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according to a decreasing slope. As far as the effects of

the number of cylinders is concerned, it may be seen that

the overall heat transfer rate may either increase or

decrease with increasing the number of cylinders in the

array, according as the cylinder-spacing is larger or

smaller than a specific value S*/D, which is found to

decrease with increasing the Rayleigh number. In partic-

ular, all the values obtained for S*/D may be pretty well

correlated to the Rayleigh number through the follow-

ing linear equation:

S�=D ¼ 10� logðRaÞ ð19Þ

with percent standard deviation of error Esd = 0.28%

and range of error E from �0.54% to +0.65%.

Of course, once the tube-spacing is set equal to S*/D,

the average Nusselt number of the whole array is inde-
Fig. 15. Comparison between Eq. (20) and the numerical

results.

Fig. 16. Comparison between Eq. (21) and the numerical

results.
pendent of the number of cylinders in the array. This

means that, for the downstream cylinders, the opposite

effects which originate from the upward-moving air flow

compensate each other, i.e., the enhancing effect of the

higher air velocity counterbalances the degrading effect

of the larger air temperature.

The numerical results obtained for the averageNusselt

number of the whole tube-arrayNuamay be correlated to

theRayleigh numberRa, to the cylinder-spacing S/D, and

to the numberN of cylinders in the array, by the following

two distinct transcendent equations, as also shown in

Figs. 15 and 16:

Nua ¼ Ra0.235f0.292 ln½ðS=DÞ0.4 � N�0.2� þ 0.447g
2 6 N 6 6 5� 102 6 Ra 6 5� 105

S=D 6 10� logðRaÞ
ð20Þ

with percent standard deviation of error Esd = 2.25%,

and range of error E from �4.79% to +5.27%;

Nua ¼ Ra0.235f0.277 ln½ðS=DÞ0.4 � N 0.2� þ 0.335g
2 6 N 6 6 5� 102 6 Ra 6 5� 105

S=D > 10� logðRaÞ
ð21Þ

with percent standard deviation of error Esd = 2.72%,

and range of error E from �6.40% to +6.09%.
7. Conclusions

Steady laminar free convection from flat vertical ar-

rays of horizontal isothermal cylinders set in free air

has been studied numerically through a specifically

developed computer-code based on the SIMPLE-C

algorithm. Simulations have been performed for arrays

of 2–6 circular cylinders, for center-to-center separation

distances from 2 up to more than 50 cylinder-diameters,

and for values of the Rayleigh number based on the cyl-

inder-diameter in the range between 5 · 102 and 5 · 105.

Heat transfer dimensionless correlating equations with

rather acceptable standard deviations and absolute val-

ues of the maximum relative error, have been developed

for any individual cylinder in the array and for the whole

tube-array. New correlation-equations for the calcula-

tion of the heat transfer rate from a single cylinder to

the surrounding air have also been proposed and com-

pared to the most prominent correlations available in

the open literature.

The main results obtained in the present study may

be summarized as follows:

(a) At any Rayleigh number, and for any tube-array,

the heat transfer rate at the bottom cylinder is

substantially identical to that for a single cylinder,

even for the closest center-to-center separation

distance investigated, i.e. S/D = 2.
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(b) The heat transfer rate at any downstream cylinder

may either enhance or degrade with respect to that

for a single cylinder, depending on the location of

the cylinder in the array and on the tube-spacing.

In particular, at any Rayleigh number investi-

gated, degradation is generally the rule at the

smaller tube-spacings, whilst enhancement pre-

dominates at the larger ones.

(c) For arrays consisting of the same number of cylin-

ders, the same distribution of the ratio Nui/Nu0
vs. x/H may well be obtained at different Ray-

leigh numbers, provided that the cylinder-spacing

S/D is decreased as the Rayleigh number Ra is

increased.

(d) For tube-spacings larger than the closest investi-

gated, i.e. for S/D > 2, the heat transfer rate at

the ith cylinder of the array is practically indepen-

dent of the number of downstream cylinders. This

means that the heat transfer rate at the ith cylin-

der is determined only by the interference with

the upstream cylinders, thus implying that the

problem may be addressed to as a one-way coor-

dinate problem.

(e) The amount of heat exchanged by the whole array

increases with the tube-spacing, according to a

decreasing slope. In addition, the overall heat

transfer rate from the array to the surrounding

air may either increase or decrease with increasing

the number of cylinders in the array, according as

the tube-spacing is larger or smaller than a specific

value which reduces slightly with increasing the

Rayleigh number.
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